IDEAS home Printed from https://ideas.repec.org/a/taf/nmcmxx/v22y2016i5p397-411.html
   My bibliography  Save this article

Mathematical modelling of a hydraulic accumulator for hydraulic hybrid drives

Author

Listed:
  • A. Pfeffer
  • T. Glück
  • W. Kemmetmüller
  • A. Kugi

Abstract

Hydraulic accumulators are used as energy storages in a wide area of applications. In particular, in automotive hybrid drive-trains, this type of energy storage is an interesting alternative to today’s common strategies like chemical batteries or flywheels. This article deals with the mathematical modelling of a hydraulic accumulator for passenger vehicles, which comprises a carbon fibre reinforced plastic (CFRP) body and aluminium piston. The thermodynamical behaviour of the oil and gas as well as the interaction with the CFRP body is investigated in detail. Starting from a complex model, two models of reduced complexity are derived. The validation of these models with measurement data from a test drive with a prototype series hydraulic hybrid drive-train proves their high accuracy.

Suggested Citation

  • A. Pfeffer & T. Glück & W. Kemmetmüller & A. Kugi, 2016. "Mathematical modelling of a hydraulic accumulator for hydraulic hybrid drives," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 22(5), pages 397-411, September.
  • Handle: RePEc:taf:nmcmxx:v:22:y:2016:i:5:p:397-411
    DOI: 10.1080/13873954.2016.1174716
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/13873954.2016.1174716
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/13873954.2016.1174716?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Branimir Škugor & Joško Petrić, 2018. "Optimization of Control Variables and Design of Management Strategy for Hybrid Hydraulic Vehicle," Energies, MDPI, vol. 11(10), pages 1-24, October.
    2. Hongwang Du & Xin Bian & Wei Xiong, 2022. "Energy Analysis and Verification of a Constant-Pressure Elastic-Strain Energy Accumulator Based on Exergy Method," Sustainability, MDPI, vol. 14(18), pages 1-14, September.
    3. Ryszard Dindorf & Jakub Takosoglu & Piotr Wos, 2023. "Review of Hydro-Pneumatic Accumulator Models for the Study of the Energy Efficiency of Hydraulic Systems," Energies, MDPI, vol. 16(18), pages 1-45, September.
    4. Shilei Zhou & Paul Walker & Yang Tian & Cong Thanh Nguyen & Nong Zhang, 2021. "Comparison on Energy Economy and Vibration Characteristics of Electric and Hydraulic in-Wheel Drive Vehicles," Energies, MDPI, vol. 14(8), pages 1-15, April.
    5. Søren Ketelsen & Sebastian Michel & Torben O. Andersen & Morten Kjeld Ebbesen & Jürgen Weber & Lasse Schmidt, 2021. "Thermo-Hydraulic Modelling and Experimental Validation of an Electro-Hydraulic Compact Drive," Energies, MDPI, vol. 14(9), pages 1-29, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:nmcmxx:v:22:y:2016:i:5:p:397-411. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/NMCM20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.