IDEAS home Printed from https://ideas.repec.org/a/taf/nmcmxx/v20y2014i6p584-615.html
   My bibliography  Save this article

Bond graph model-based system mode identification and mode-dependent fault thresholds for hybrid systems

Author

Listed:
  • W. Borutzky

Abstract

Hybrid system models exploit the modelling abstraction that fast state transitions take place instantaneously so that they encompass discrete events and the continuous time behaviour for the while of a system mode. If a system is in a certain mode, e.g. two rigid bodies stick together, then residuals of analytical redundancy relations (ARRs) within certain small bounds indicate that the system is healthy. An unobserved mode change, however, invalidates the current model for the dynamic behaviour. As a result, ARR residuals may exceed current thresholds indicating faults in system components that have not happened. The paper shows that ARR residuals derived from a bond graph cannot only serve as fault indicators but may also be used for bond graph model-based system mode identification. ARR residuals are numerically computed in an off-line simulation by coupling a bond graph of the faulty system to a non-faulty system bond graph through residual sinks. In real-time simulation, the faulty system model is to be replaced by measurements from the real system. As parameter values are uncertain, it is important to determine adaptive ARR thresholds that, given uncertain parameters, allow to decide whether the dynamic behaviour in a current system mode is the one of the healthy system so that false alarms or overlooking of true faults can be avoided. The paper shows how incremental bond graphs can be used to determine adaptive mode-dependent ARR thresholds for switched linear time-invariant systems with uncertain parameters in order to support robust fault detection. Bond graph-based hybrid system mode identification as well as the determination of adaptive fault thresholds is illustrated by application to a power electronic system easy to survey. Some simulation results have been analytically validated.

Suggested Citation

  • W. Borutzky, 2014. "Bond graph model-based system mode identification and mode-dependent fault thresholds for hybrid systems," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 20(6), pages 584-615, November.
  • Handle: RePEc:taf:nmcmxx:v:20:y:2014:i:6:p:584-615
    DOI: 10.1080/13873954.2013.874361
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/13873954.2013.874361
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/13873954.2013.874361?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:nmcmxx:v:20:y:2014:i:6:p:584-615. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/NMCM20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.