IDEAS home Printed from https://ideas.repec.org/a/taf/nmcmxx/v19y2013i6p526-539.html
   My bibliography  Save this article

A novel recursive subspace identification approach of closed-loop systems

Author

Listed:
  • Jia Wang
  • Hong-Wei Wang
  • Hong Gu

Abstract

In this paper, a subspace model identification method under closed-loop experimental condition is presented which can be implemented to recursively identify and update the system model. The projected matrices play an important role in this identification scheme which can be obtained by the projection of the input and output data onto the space of exogenous inputs and recursively updated through sliding window technique. The propagator type method in array signal processing is then applied to calculate the subspace spanned by the column vectors of the extended observability matrix without singular value decomposition. The speed of convergence of the proposed method is mainly dependent on the number of block Hankel matrix rows and the initialization accuracy of the projected data matrices. The proposed method is feasible for the closed-loop system contaminated with coloured noises. Two numerical examples show the effectiveness of the proposed algorithm.

Suggested Citation

  • Jia Wang & Hong-Wei Wang & Hong Gu, 2013. "A novel recursive subspace identification approach of closed-loop systems," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 19(6), pages 526-539, December.
  • Handle: RePEc:taf:nmcmxx:v:19:y:2013:i:6:p:526-539
    DOI: 10.1080/13873954.2013.801355
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/13873954.2013.801355
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/13873954.2013.801355?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xuehai Wang & Feng Ding, 2016. "Modelling and multi-innovation parameter identification for Hammerstein nonlinear state space systems using the filtering technique," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 22(2), pages 113-140, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:nmcmxx:v:19:y:2013:i:6:p:526-539. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/NMCM20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.