Author
Listed:
- Alexander Schuster
- Martin Kozek
- Bernhard Voglauer
- Andreas Voigt
Abstract
A dynamic model of a through-air-drying process for viscose staple fibres is presented in this article. In this process fibres formed to a porous web are transported through a convective dryer that consists of numerous rotating drum sieves. Finally, the fibres pass through two remoistening drums. The structure of the model is modular and scalable. On applying spatial discretization the originally partial differential system equations (conservation of mass and energy) turn into a system of ordinary differential equations. Drying rates and heat transfer rates are calculated using phenomenological equations for heat and mass transfer. Kinetics of drying is separated into three phases, where viscose fibres are hygroscopic. The process model is able to simulate transient behaviour of the dryer like changes of the incoming fibre moisture, changes of the drying air temperature and humidity and changes of the thickness of fibre layer on the drums. Stationary validation of the longitudinal fibre moisture distribution along the dryer shows good accordance with measurement data at different operating points, for example, different temperature profiles. Dynamic data like temperature transients are utilized for both model fitting and validation of the dynamic model. For the remoistening process and disturbance behaviour concerning the thickness of the fibre web, black box models have been identified. Results of a successful application of the model in a predictive control algorithm are shown.
Suggested Citation
Alexander Schuster & Martin Kozek & Bernhard Voglauer & Andreas Voigt, 2012.
"Grey-box modelling of a viscose-fibre drying process,"
Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 18(3), pages 307-325, January.
Handle:
RePEc:taf:nmcmxx:v:18:y:2012:i:3:p:307-325
DOI: 10.1080/13873954.2012.662777
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:nmcmxx:v:18:y:2012:i:3:p:307-325. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/NMCM20 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.