IDEAS home Printed from https://ideas.repec.org/a/taf/nmcmxx/v17y2010i3p221-242.html
   My bibliography  Save this article

Modelling a hormone-inspired controller for individual- and multi-modular robotic systems

Author

Listed:
  • Thomas Schmickl
  • Heiko Hamann
  • Karl Crailsheim

Abstract

For all living organisms, the ability to regulate internal homeostasis is a crucial feature. This ability to control variables around a set point is found frequently in the physiological networks of single cells and of higher organisms. Also, nutrient allocation and task selection in social insect colonies can be interpreted as homeostatic processes of a super-organism. And finally, behaviour can also represent such a control scheme. We show how a simple model of hormone regulation, inspired by simple biological organisms, can be used as a novel method to control the behaviour of autonomous robots. We demonstrate the formulation of such an artificial homeostatic hormone system (AHHS) by a set of linked difference equations and explain how the homeostatic control of behaviour is achieved by homeostatic control of the internal ‘hormonal’ state of the robot. The first task that we used to check the quality of our AHHS controllers was a very simple one, which is often a core functionality in controller programmes that are used in autonomous robots: obstacle avoidance. We demonstrate two implementations of such an AHHS controller that performs this task in differing levels of quality. Both controllers use the concept of homeostatic control of internal variables (hormones) and they extend this concept to also include the outside world of the robots into the controlling feedback loops: As they try to regulate internal hormone levels, they are forced to keep a homeostatic control of sensor values in a way that the desired goal ‘obstacle avoidance’ is achieved. Thus, the created behaviour is also a manifestation of the acts of homeostatic control. The controllers were evaluated using a stock-and-flow model that allowed sensitivity analysis and stability tests. Afterwards, we have also tested both controllers in a multi-agent simulation tool, which allowed us to predict the robots' behaviours in various habitats and group sizes. Finally, we demonstrate how this novel AHHS controller is suitable to control a multi-cellular robotic organism in an evolutionary robotics approach, which is used for self-programming in a gait-learning task. These examples shown in this article represent the first step in our research towards autonomous aggregation and coordination of robots to higher-level modular robotic organisms that consist of several joined autonomous robotic units. Finally, we plan to achieve such aggregation patterns and to control complex-shaped robotic organisms using AHHS controllers, as they are described here.

Suggested Citation

  • Thomas Schmickl & Heiko Hamann & Karl Crailsheim, 2010. "Modelling a hormone-inspired controller for individual- and multi-modular robotic systems," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 17(3), pages 221-242, December.
  • Handle: RePEc:taf:nmcmxx:v:17:y:2010:i:3:p:221-242
    DOI: 10.1080/13873954.2011.557862
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/13873954.2011.557862
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/13873954.2011.557862?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:nmcmxx:v:17:y:2010:i:3:p:221-242. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/NMCM20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.