IDEAS home Printed from https://ideas.repec.org/a/taf/mpopst/v8y2000i1p31-54.html
   My bibliography  Save this article

Imparting structural instability to mortality forecasts: Testing for sensitive dependence on initial conditions with innovations

Author

Listed:
  • Lawrence Carter

Abstract

This article explores a nontraditional approach to examining the problem of forecast uncertainty in extrapolative demographic models. It builds on prior research on stochastic time series forecast models, but diverges to examine their deterministic counterparts. The focus here is an examination of the structural integrity of the Lee-Carter (1992) method applied to mortality forecasts. I investigate the nonlinear dynamics of the Lee-Carter method, particularly its sensitive dependence of the forecasts on the initial conditions of the model. I examine the Lee-Carter nonlinear demographic model, mx,t — exp (ax+ bxkt + ex,t), which is decomposed using SVD to derive a single time-varying linear index of mortality, kt. From a 90 year time series of kt, forty nine 40 year realizations are sampled. These realizations are modeled and estimated using Box-Jenkins techniques. The estimated parameters of these realizations and the first case of each of the samples are the initial conditions for the iterations of nonlinearized transformation of k, to exp (kt). The terminal year for each of the 49 iterated series is 2065. The deterministic nonlinear dynamics of this system of 49 iterated series is investigated by testing its Lyapunov exponents as a nonparametric diagnostic of a one dimensional dynamical system. The exponents are all negative, indicating that chaos is not prevalent in this system. The nonexistence of chaos suggests stability in the model and reaffirms the predictability of this one dimensional map. Augmenting the iterations of the initial conditions with additive stochastic innovations, {et, t ≥ 1}, creates a stochastic dynamical system of the form, kt = kt,-1 — c + ϕ flu +et. Here, et is treated as a surrogate for some unanticipated time series event (e.g. an epidemic) that impacts the deterministic map. Gaussian white noise innovations do not move the iterations far from equilibrium and only for short time intervals. So, stepping the mean of the innovations by .01 produces stable Lyapunov exponents until the mean equals .35 where some of the exponents are positive. At this point, deterministic chaos is evident, implying instability in the forecasts. The substantive implications of this instability are discussed.

Suggested Citation

  • Lawrence Carter, 2000. "Imparting structural instability to mortality forecasts: Testing for sensitive dependence on initial conditions with innovations," Mathematical Population Studies, Taylor & Francis Journals, vol. 8(1), pages 31-54.
  • Handle: RePEc:taf:mpopst:v:8:y:2000:i:1:p:31-54
    DOI: 10.1080/08898480009525472
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/08898480009525472
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/08898480009525472?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Booth, Heather, 2006. "Demographic forecasting: 1980 to 2005 in review," International Journal of Forecasting, Elsevier, vol. 22(3), pages 547-581.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:mpopst:v:8:y:2000:i:1:p:31-54. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GMPS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.