Author
Listed:
- Xiaofeng Xu
- Xinru Huang
- Lianju Wang
Abstract
In logistics networks, empty container congestion and scarcity often stem from trade imbalance and supply-demand mismatch. This paper focuses on the problem of empty container repositioning in maritime logistics and proposes a reinforcement learning framework that integrates a self-adaptive mechanism for adjusting the weights of a multi-objective reward function. The objective is to enhance container utilization and reduce scheduling costs. By reviewing the development of the empty container repositioning problem and analysing the advantages of using reinforcement learning to address the temporal and spatial complexity, the problem is modelled as a Markov decision process and tackled using reinforcement learning techniques. To achieve the optimization objectives, which involve reducing resource shortages at various locations and minimizing resource repositioning costs, a multi-objective reward function is introduced to capture the mutually constrained preferences. The weights of the reward function are dynamically adjusted to account for the potential time-varying preferences of the agent, mitigating the issue of poor generalization performance associated with fixed-weight reward functions. Comparative experimental analysis against conventional reinforcement learning algorithms demonstrates the superior performance of the proposed approach in problem solving. Based on the results and practical requirements of the case study, relevant recommendations for addressing empty container repositioning are presented.
Suggested Citation
Xiaofeng Xu & Xinru Huang & Lianju Wang, 2024.
"Empty container repositioning problem using a reinforcement learning framework with multi-weight adaptive reward function,"
Maritime Policy & Management, Taylor & Francis Journals, vol. 51(8), pages 1742-1763, November.
Handle:
RePEc:taf:marpmg:v:51:y:2024:i:8:p:1742-1763
DOI: 10.1080/03088839.2024.2326635
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:marpmg:v:51:y:2024:i:8:p:1742-1763. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TMPM20 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.