IDEAS home Printed from https://ideas.repec.org/a/taf/marpmg/v51y2024i7p1443-1473.html
   My bibliography  Save this article

Exploration of machine learning methods for maritime risk predictions

Author

Listed:
  • Sabine Knapp
  • Michel van de Velden

Abstract

Maritime applications such as targeting ships for inspections, improved domain awareness, and dynamic risk exposure assessments for strategic planning all benefit from ship-specific incident probabilities. Using a unique and comprehensive global data set, of 1.2 million observations over the period from 2014 to 2020, this study explores the effectiveness and suitability of 144 model variants from the field of machine learning for eight incident endpoints of interest and evaluating over 580 covariates. Furthermore, the importance of covariates is examined and visualized. The results differ for each endpoint of interest but confirm that random forest methods can improve prediction capabilities. Based on out-of-sample evaluations for the year 2020, targeting the top 10% most risky vessels would improve predictions by a factor of 2.7 to 4.9 compared to random selection and based on the top decile lift. Balanced random forests and random forests with balanced training variants outperform regular random forests, for which the selected variants also depend on aggregation types. The most important covariate groups for predicting incident probabilities relate to beneficial ownership, the safety management company, and the size and age of the vessel, while the relevance of these factors remains similar across the different endpoints of interest.

Suggested Citation

  • Sabine Knapp & Michel van de Velden, 2024. "Exploration of machine learning methods for maritime risk predictions," Maritime Policy & Management, Taylor & Francis Journals, vol. 51(7), pages 1443-1473, October.
  • Handle: RePEc:taf:marpmg:v:51:y:2024:i:7:p:1443-1473
    DOI: 10.1080/03088839.2023.2209788
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03088839.2023.2209788
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03088839.2023.2209788?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:marpmg:v:51:y:2024:i:7:p:1443-1473. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TMPM20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.