IDEAS home Printed from https://ideas.repec.org/a/taf/marpmg/v50y2023i1p117-139.html
   My bibliography  Save this article

Analysis and prediction of ship energy efficiency based on the MRV system

Author

Listed:
  • Ran Yan
  • Haoyu Mo
  • Shuaian Wang
  • Dong Yang

Abstract

To reduce CO2 emissions from shipping activities to, from, and within the European Union (EU) area, a system of monitoring, reporting, and verification (MRV) of CO2 emissions from ships are implemented in 2015 by the EU. Although the MRV records in 2018 and 2019 have been published, there are scarce studies on the MRV system especially from a quantitative perspective, which restrains the potential of the MRV. To bridge this gap, this paper first analyzes and compares MRV records in 2018 and 2019, and then develops machine learning models for annual average fuel consumption prediction for each ship type combining ship features from an external database. The performance of the prediction models is accurate, with the mean absolute percentage error (MAPE) on the test set no more than 12% and the average R-squared of all the models at 0.78. Based on the analysis and prediction results, model meanings, implications, and extensions are thoroughly discussed. This study is a pioneer to analyze the emission reports in the MRV system from a quantitative perspective. It also develops the first fuel consumption prediction models from a macro perspective using the MRV data. It can contribute to the promotion of green shipping strategies.

Suggested Citation

  • Ran Yan & Haoyu Mo & Shuaian Wang & Dong Yang, 2023. "Analysis and prediction of ship energy efficiency based on the MRV system," Maritime Policy & Management, Taylor & Francis Journals, vol. 50(1), pages 117-139, January.
  • Handle: RePEc:taf:marpmg:v:50:y:2023:i:1:p:117-139
    DOI: 10.1080/03088839.2021.1968059
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03088839.2021.1968059
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03088839.2021.1968059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nguyen, Son & Fu, Xiuju & Ogawa, Daichi & Zheng, Qin, 2023. "An application-oriented testing regime and multi-ship predictive modeling for vessel fuel consumption prediction," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    2. Nivolianiti, Evaggelia & Karnavas, Yannis L. & Charpentier, Jean-Frederic, 2024. "Energy management of shipboard microgrids integrating energy storage systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    3. Liu, Hanyou & Fan, Ailong & Li, Yongping & Bucknall, Richard & Chen, Li, 2024. "Hierarchical distributed MPC method for hybrid energy management: A case study of ship with variable operating conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:marpmg:v:50:y:2023:i:1:p:117-139. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TMPM20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.