IDEAS home Printed from https://ideas.repec.org/a/taf/marpmg/v49y2022i1p140-153.html
   My bibliography  Save this article

Ship detention prediction via feature selection scheme and support vector machine (SVM)

Author

Listed:
  • Shubo Wu
  • Xinqiang Chen
  • Chaojian Shi
  • Junjie Fu
  • Ying Yan
  • Shengzheng Wang

Abstract

Ship detention decision plays a key role in port state control (PSC) inspection process, which is compactly related to navigation safety and maritime environmental protection. Many focuses were paid to exploit intrinsic relationship among ship attributes (ship age, type, etc.), detention events and typical ship deficiencies. It is noted that many ship detention prediction frameworks were implemented considering single type of factors regardless of internal relationship between ship crucial deficiencies and ship attributes. To address the issue, we proposed a support vector machine (SVM) based framework to exploit crucial ship deficiencies, and thus forecast the probability of ship detention event. Firstly, we design a feature selection scheme to determine ship fatal deficiency types by exploring historical PSC inspection data. Secondly, we predict the ship detention event via conventional support vector machine (SVM) with support of ship feature selection outputs. Thirdly, we verify the proposed framework performance by predicting ship detention event from historical PSC data, which is quantified with the indicators of accuracy ($$Acc$$Acc) and area under ROC curve ($$AUC$$AUC). The research findings help PSC officials easily identify fatal ship deficiencies, and thus make more reasonable ship detention decision in real-world PSC activity.

Suggested Citation

  • Shubo Wu & Xinqiang Chen & Chaojian Shi & Junjie Fu & Ying Yan & Shengzheng Wang, 2022. "Ship detention prediction via feature selection scheme and support vector machine (SVM)," Maritime Policy & Management, Taylor & Francis Journals, vol. 49(1), pages 140-153, January.
  • Handle: RePEc:taf:marpmg:v:49:y:2022:i:1:p:140-153
    DOI: 10.1080/03088839.2021.1875141
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03088839.2021.1875141
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03088839.2021.1875141?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Kezhong & Yu, Qing & Yang, Zhisen & Wan, Chengpeng & Yang, Zaili, 2022. "BN-based port state control inspection for Paris MoU: New risk factors and probability training using big data," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    2. Tian, Xuecheng & Yan, Ran & Liu, Yannick & Wang, Shuaian, 2023. "A smart predict-then-optimize method for targeted and cost-effective maritime transportation," Transportation Research Part B: Methodological, Elsevier, vol. 172(C), pages 32-52.
    3. Yan, Ran & Wang, Shuaian & Zhen, Lu, 2023. "An extended smart “predict, and optimize” (SPO) framework based on similar sets for ship inspection planning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 173(C).
    4. Xizi Qiao & Ying Yang & Yu Guo & Yong Jin & Shuaian Wang, 2024. "Optimal Routing and Scheduling of Flag State Control Officers in Maritime Transportation," Mathematics, MDPI, vol. 12(11), pages 1-23, May.
    5. Xizi Qiao & Ying Yang & King-Wah Pang & Yong Jin & Shuaian Wang, 2024. "Ship Selection and Inspection Scheduling in Inland Waterway Transport," Mathematics, MDPI, vol. 12(15), pages 1-23, July.
    6. Xuecheng Tian & Shuaian Wang, 2022. "Cost-Sensitive Laplacian Logistic Regression for Ship Detention Prediction," Mathematics, MDPI, vol. 11(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:marpmg:v:49:y:2022:i:1:p:140-153. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TMPM20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.