IDEAS home Printed from https://ideas.repec.org/a/taf/marpmg/v42y2015i8p806-826.html
   My bibliography  Save this article

A simulation optimization approach for solving the dual-cycling problem in container terminals

Author

Listed:
  • Qingcheng Zeng
  • Ali Diabat
  • Qian Zhang

Abstract

Dual cycling is an operation technique whereby quay cranes perform loading and unloading operations simultaneously in the same ship bay. In this article, a mixed-integer programming model for quay crane dual-cycling scheduling is developed. The model considers the stowage plan of outbound containers and the operation sequence of quay cranes. To solve the model, a heuristic method, called bi-level genetic algorithm, is designed. Meanwhile, a simulation optimization method integrating the intelligent decision mechanism of the optimization algorithm and evaluation function of simulation model is proposed. Numerical experiments indicate that dual cycling can reduce the operation time of quay cranes compared to the method of scheduling loading and unloading separately. Moreover, the model and algorithms developed in this article can tackle quay crane dual-cycling problem efficiently.

Suggested Citation

  • Qingcheng Zeng & Ali Diabat & Qian Zhang, 2015. "A simulation optimization approach for solving the dual-cycling problem in container terminals," Maritime Policy & Management, Taylor & Francis Journals, vol. 42(8), pages 806-826, November.
  • Handle: RePEc:taf:marpmg:v:42:y:2015:i:8:p:806-826
    DOI: 10.1080/03088839.2015.1043362
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03088839.2015.1043362
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03088839.2015.1043362?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Branislav Dragović & Ernestos Tzannatos & Nam Kuy Park, 2017. "Simulation modelling in ports and container terminals: literature overview and analysis by research field, application area and tool," Flexible Services and Manufacturing Journal, Springer, vol. 29(1), pages 4-34, March.
    2. Cansu Kandemir & Holly A. H. Handley, 2019. "Work process improvement through simulation optimization of task assignment and mental workload," Computational and Mathematical Organization Theory, Springer, vol. 25(4), pages 389-427, December.
    3. Nabil Nehme & Bacel Maddah & Isam A. Kaysi, 2021. "An integrated multi-ship crane allocation in Beirut Port container terminal," Operational Research, Springer, vol. 21(3), pages 1743-1761, September.
    4. Hristos Karahalios, 2017. "Evaluating the knowledge of experts in the maritime regulatory field," Maritime Policy & Management, Taylor & Francis Journals, vol. 44(4), pages 426-441, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:marpmg:v:42:y:2015:i:8:p:806-826. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TMPM20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.