IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v54y2025i4p1050-1070.html
   My bibliography  Save this article

Minimum density power divergence estimation for the generalized exponential distribution

Author

Listed:
  • Arnab Hazra

Abstract

Statistical modeling of rainfall data is an active research area in agro-meteorology. The most common models fitted to such datasets are exponential, gamma, log-normal, and Weibull distributions. As an alternative to some of these models, the generalized exponential (GE) distribution was proposed by Gupta and Kundu (2001a). Rainfall (specifically for short periods) datasets often include outliers, and thus, a proper robust parameter estimation procedure is necessary. Here, we use the popular minimum density power divergence estimation (MDPDE) procedure developed by Basu et al. (1998) for estimating the GE parameters. We derive the analytical expressions for the estimating equations and asymptotic distributions. We analytically compare MDPDE with maximum likelihood estimation in terms of robustness, through an influence function analysis. Besides, we study the asymptotic relative efficiency of MDPDE analytically for different parameter settings. We apply the proposed technique to some simulated datasets and two rainfall datasets from Texas, United States. The results indicate superior performance of MDPDE compared to the other existing estimation techniques in most of the scenarios.

Suggested Citation

  • Arnab Hazra, 2025. "Minimum density power divergence estimation for the generalized exponential distribution," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 54(4), pages 1050-1070, February.
  • Handle: RePEc:taf:lstaxx:v:54:y:2025:i:4:p:1050-1070
    DOI: 10.1080/03610926.2024.2329768
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2024.2329768
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2024.2329768?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:54:y:2025:i:4:p:1050-1070. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.