IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v53y2024i7p2578-2598.html
   My bibliography  Save this article

How to estimate the memory of the elephant random walk

Author

Listed:
  • Bernard Bercu
  • Lucile Laulin

Abstract

We introduce an original way to estimate the memory parameter of the elephant random walk, a fascinating discrete time random walk on integers having a complete memory of its entire history. Our estimator is nothing more than a quasi-maximum likelihood estimator, based on a second order Taylor approximation of the log-likelihood function. We show the almost sure convergence of our estimate in the diffusive, critical and superdiffusive regimes. The local asymptotic normality of our statistical procedure is established in the diffusive regime, while the local asymptotic mixed normality is proven in the superdiffusive regime. Asymptotic and exact confidence intervals as well as statistical tests are also provided. All our analysis relies on asymptotic results for martingales and the quadratic variations associated.

Suggested Citation

  • Bernard Bercu & Lucile Laulin, 2024. "How to estimate the memory of the elephant random walk," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 53(7), pages 2578-2598, April.
  • Handle: RePEc:taf:lstaxx:v:53:y:2024:i:7:p:2578-2598
    DOI: 10.1080/03610926.2022.2139149
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2022.2139149
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2022.2139149?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:53:y:2024:i:7:p:2578-2598. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.