IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v53y2024i6p2141-2153.html
   My bibliography  Save this article

A robust Spearman correlation coefficient permutation test

Author

Listed:
  • Han Yu
  • Alan D. Hutson

Abstract

In this work, we show that Spearman’s correlation coefficient test about H0:ρs=0 found in most statistical software is theoretically incorrect and performs poorly when bivariate normality assumptions are not met or the sample size is small. There is common misconception that the tests about ρs=0 are robust to deviations from bivariate normality. However, we found under certain scenarios violation of the bivariate normality assumption has severe effects on type I error control for the common tests. To address this issue, we developed a robust permutation test for testing the hypothesis H0:ρs=0 based on an appropriately studentized statistic. We will show that the test is asymptotically valid in general settings. This was demonstrated by a comprehensive set of simulation studies, where the proposed test exhibits robust type I error control, even when the sample size is small. We also demonstrated the application of this test in two real world examples.

Suggested Citation

  • Han Yu & Alan D. Hutson, 2024. "A robust Spearman correlation coefficient permutation test," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 53(6), pages 2141-2153, March.
  • Handle: RePEc:taf:lstaxx:v:53:y:2024:i:6:p:2141-2153
    DOI: 10.1080/03610926.2022.2121144
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2022.2121144
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2022.2121144?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stefano Bonnini & Getnet Melak Assegie & Kamila Trzcinska, 2024. "Review about the Permutation Approach in Hypothesis Testing," Mathematics, MDPI, vol. 12(17), pages 1-29, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:53:y:2024:i:6:p:2141-2153. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.