IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v53y2024i21p7699-7710.html
   My bibliography  Save this article

Optimal periodic dividends with penalty payments under a diffusion model

Author

Listed:
  • Long Yang
  • Guohe Deng

Abstract

In this work, we examine the optimal periodic dividend problem with penalty payments for a diffusion model, where dividends are only paid at Poisson arrival times. Moreover, we assume that (observed) ruin or bankruptcy does not occur even if the surplus is negative, but the penalty payments happen. The goal is to seek an optimal periodic dividend strategy to maximize the expectation of the difference between the present value of dividends and penalty payments. We demonstrate that the optimal strategy is a periodic barrier strategy. For the exponential penalty function, the optimal periodic barrier and the explicit expression for the value function are determined. Several numerical instances are also presented.

Suggested Citation

  • Long Yang & Guohe Deng, 2024. "Optimal periodic dividends with penalty payments under a diffusion model," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 53(21), pages 7699-7710, November.
  • Handle: RePEc:taf:lstaxx:v:53:y:2024:i:21:p:7699-7710
    DOI: 10.1080/03610926.2023.2272002
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2023.2272002
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2023.2272002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:53:y:2024:i:21:p:7699-7710. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.