IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v53y2024i20p7181-7196.html
   My bibliography  Save this article

A population model with Markovian arrival process and binomial correlated catastrophes

Author

Listed:
  • Nitin Kumar

Abstract

Stochastic population models with mild catastrophes have gained much attention in recent years due to their wide application in a variety of areas including computer-communications systems. This article considers a population model in which both the arrival process of individuals and catastrophes occur as per the Markovian arrival process (MAP) and are independent of each other. The killing mechanism takes place according to the binomial distribution. The steady-state analysis of the model is carried out using the vector generating function approach and the population size distributions at an arbitrary, post-catastrophe, and pre-arrival epochs are presented in terms of the roots of the characteristic equation. Several performance measures of the system are studied in detail, and the impact of critical parameters is duly investigated.

Suggested Citation

  • Nitin Kumar, 2024. "A population model with Markovian arrival process and binomial correlated catastrophes," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 53(20), pages 7181-7196, October.
  • Handle: RePEc:taf:lstaxx:v:53:y:2024:i:20:p:7181-7196
    DOI: 10.1080/03610926.2023.2261059
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2023.2261059
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2023.2261059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:53:y:2024:i:20:p:7181-7196. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.