IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v53y2024i19p6852-6868.html
   My bibliography  Save this article

A new uncertainty measure via belief Rényi entropy in Dempster-Shafer theory and its application to decision making

Author

Listed:
  • Zhe Liu
  • Yu Cao
  • Xiangli Yang
  • Lusi Liu

Abstract

Dempster-Shafer theory (DST) has attracted wide attention in many fields thanks to its strong advantages over probability theory. Whereas the uncertainty measure of basic belief assignment (BBA) in DST is an open and essential problem. The main goal of this article is to propose a new belief Rényi entropy for the uncertainty measure of BBA, which is inspired by generalized Rényi entropy in DST. The proposed belief Rényi entropy satisfies some desirable properties of uncertainty measure. Furthermore, the proposed belief Rényi entropy can be degraded to Rényi entropy when BBA is transformed into a probability distribution. Finally, a new decision-making method is designed based on the proposed belief Rényi entropy. The validity of the proposed belief entropy is verified by some numerical examples and its application to decision-making.

Suggested Citation

  • Zhe Liu & Yu Cao & Xiangli Yang & Lusi Liu, 2024. "A new uncertainty measure via belief Rényi entropy in Dempster-Shafer theory and its application to decision making," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 53(19), pages 6852-6868, October.
  • Handle: RePEc:taf:lstaxx:v:53:y:2024:i:19:p:6852-6868
    DOI: 10.1080/03610926.2023.2253342
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2023.2253342
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2023.2253342?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:53:y:2024:i:19:p:6852-6868. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.