IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v52y2023i3p543-566.html
   My bibliography  Save this article

Optimal dividend strategy for the dual model with surplus-dependent expense

Author

Listed:
  • Shanshan Liu
  • Zhaoyang Liu
  • Guoxin Liu

Abstract

In this paper, we consider the optimal dividend problem for the dual model with surplus-dependent expense. The objective is to find the optimal dividend-payment strategy that maximizes the expected discounted value of dividends until the time of ruin. We give the analytic characterizations of admissible strategy and Markov strategy and show that a dividend strategy is a Markov strategy if and only if it is an additive functional of the controlled surplus process. We use the theory of measure-valued generators to derive a measure-valued dynamic programming equation (DPE). And the verification theorem is proved without additional assumptions on the regularity of the value function. Under the assumption that the value function is locally Lipschitz continuous, the optimal strategy is presented as a Markov strategy and hence a band strategy. Numerical examples are also given.

Suggested Citation

  • Shanshan Liu & Zhaoyang Liu & Guoxin Liu, 2023. "Optimal dividend strategy for the dual model with surplus-dependent expense," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 52(3), pages 543-566, February.
  • Handle: RePEc:taf:lstaxx:v:52:y:2023:i:3:p:543-566
    DOI: 10.1080/03610926.2021.1917614
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2021.1917614
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2021.1917614?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:52:y:2023:i:3:p:543-566. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.