IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v52y2023i19p6806-6819.html
   My bibliography  Save this article

Robust factor models for high-dimensional time series and their forecasting

Author

Listed:
  • Xiaodong Bai
  • Li Zheng

Abstract

This paper deals with the factor modeling and forecasting for high-dimensional time series with additive outliers. Under the assumption that the sample size n and the dimension of time series p tend to infinity together, the asymptotic properties of several robust estimators are established, including estimation errors and forecast errors. We also propose a detailed algorithm of constructing bootstrap prediction intervals for the high-dimensional time series. We show the superiority of the approach by both simulation studies and an application to the daily air quality index for the main cities in the Yangtze River Delta region of China.

Suggested Citation

  • Xiaodong Bai & Li Zheng, 2023. "Robust factor models for high-dimensional time series and their forecasting," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 52(19), pages 6806-6819, October.
  • Handle: RePEc:taf:lstaxx:v:52:y:2023:i:19:p:6806-6819
    DOI: 10.1080/03610926.2022.2033777
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2022.2033777
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2022.2033777?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Valdério Anselmo Reisen & Céline Lévy-Leduc & Edson Zambon Monte & Pascal Bondon, 2024. "A dimension reduction factor approach for multivariate time series with long-memory: a robust alternative method," Statistical Papers, Springer, vol. 65(5), pages 2865-2886, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:52:y:2023:i:19:p:6806-6819. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.