IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v51y2022i3p744-766.html
   My bibliography  Save this article

Multiple hypothesis testing for Poisson processes with variable change–point intensity

Author

Listed:
  • Lin Yang

Abstract

Consider the multiple hypothesis problem for n independent Poisson processes whose jump size of the intensity function varies with n. The intensity function contains two types of parameters, the jump instant and the shift or scale parameter, which produces the dependence of the statistics. The Bayes multiple procedure is proposed to diminish the effect of the dependence while three other procedures are constructed in comparison. For each procedure, we describe the choice of the thresholds, the power and the general power under the local alternatives as n→+∞. The numerical results show that the limit powers of the Bayes multiple procedure are higher than the others in the neighborhood of the null hypotheses.

Suggested Citation

  • Lin Yang, 2022. "Multiple hypothesis testing for Poisson processes with variable change–point intensity," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 51(3), pages 744-766, February.
  • Handle: RePEc:taf:lstaxx:v:51:y:2022:i:3:p:744-766
    DOI: 10.1080/03610926.2020.1754856
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2020.1754856
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2020.1754856?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:51:y:2022:i:3:p:744-766. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.