Author
Listed:
- James Webber
- Erika Hussey
- Eric Miller
- Shuchin Aeron
Abstract
Here we present a new non-parametric approach to density estimation and classification derived from theory in Radon transforms and image reconstruction. We start by constructing a “forward problem” in which the unknown density is mapped to a set of one dimensional empirical distribution functions computed from the raw input data. Interpreting this mapping in terms of Radon-type projections provides an analytical connection between the data and the density with many very useful properties including stable invertibility, fast computation, and significant theoretical grounding. Using results from the literature in geometric inverse problems we give uniqueness results and stability estimates for our methods. We subsequently extend the ideas to address problems in manifold learning and density estimation on manifolds. We introduce two new algorithms which can be readily applied to implement density estimation using Radon transforms in low dimensions or on low dimensional manifolds embedded in Rd. The code for our algorithms can be found here https://github.com/jameswebber1/On-nonparametric-density-estimation-on-linear-and-nonlinear-manifolds. We test our algorithms performance on a range of synthetic 2-D density estimation problems, designed with a mixture of sharp edges and smooth features. We show that our algorithm can offer a consistently competitive performance when compared to the state–of–the–art density estimation methods from the literature.
Suggested Citation
James Webber & Erika Hussey & Eric Miller & Shuchin Aeron, 2022.
"On non-parametric density estimation on linear and non-linear manifolds using generalized Radon transforms,"
Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 51(23), pages 8406-8426, October.
Handle:
RePEc:taf:lstaxx:v:51:y:2022:i:23:p:8406-8426
DOI: 10.1080/03610926.2021.1897143
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:51:y:2022:i:23:p:8406-8426. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.