IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v51y2022i1p267-283.html
   My bibliography  Save this article

Empirical likelihood in varying-coefficient quantile regression with missing observations

Author

Listed:
  • Bao-Hua Wang
  • Han-Ying Liang

Abstract

In this paper, we focus on the partially linear varying-coefficient quantile regression model with observations missing at random (MAR), which include the responses or the responses and covariates MAR. Based on the local linear estimation of the varying-coefficient function in the model, we construct empirical log-likelihood ratio functions for unknown parameter in the linear part of the model, which are proved to be asymptotically weighted chi-squared distributions, further the adjusted empirical log-likelihood ratio functions are verified to converge to standard chi-squared distribution. The asymptotic normality of maximum empirical likelihood estimator for the parameter is also established. In order to do variable selection, we consider penalized empirical likelihood by using smoothly clipped absolute deviationv (SCAD) penalty, and the oracle property of the penalized likelihood estimator of the parameter is proved. Furthermore, Monte Carlo simulation and a real data analysis are undertaken to test the performance of the proposed methods.

Suggested Citation

  • Bao-Hua Wang & Han-Ying Liang, 2022. "Empirical likelihood in varying-coefficient quantile regression with missing observations," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 51(1), pages 267-283, January.
  • Handle: RePEc:taf:lstaxx:v:51:y:2022:i:1:p:267-283
    DOI: 10.1080/03610926.2020.1747629
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2020.1747629
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2020.1747629?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chang-Sheng Liu & Han-Ying Liang, 2023. "Bayesian empirical likelihood of quantile regression with missing observations," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(3), pages 285-313, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:51:y:2022:i:1:p:267-283. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.