IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v51y2022i11p3739-3760.html
   My bibliography  Save this article

Extended analysis and computationally efficient results for the GI/Ma,b/1 queueing system

Author

Listed:
  • S. K. Samanta
  • B. Bank

Abstract

We consider an infinite waiting space GI/Ma,b/1 queueing system in which customers arrive according to a renewal process. The server serves the customers in batches under general bulk-service rule. The successive service times of batches are mutually independent and have a common exponential distribution. To obtain the queue-length distributions at prearrival and random epochs, we have used the displacement operator which assists to solve simultaneous non-homogeneous difference equations. An analytically simple and computationally efficient procedures have developed to compute the waiting-time distribution of an arrival customer. Our formula to determine the waiting-time distribution is also useful even when multiple poles occur in the Laplace-Stieltjes transform of the interarrival time distribution. We have determined closed-form analytical expression for the distribution of size of a service batch of an arrived customer. We also have derived the results of some particular well-known queueing models from our model. Some numerical results are provided in the form of tables for a variety of interarrival-time distributions to demonstrate the variation of performance measures of the system.

Suggested Citation

  • S. K. Samanta & B. Bank, 2022. "Extended analysis and computationally efficient results for the GI/Ma,b/1 queueing system," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 51(11), pages 3739-3760, June.
  • Handle: RePEc:taf:lstaxx:v:51:y:2022:i:11:p:3739-3760
    DOI: 10.1080/03610926.2020.1801739
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2020.1801739
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2020.1801739?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kousik Das & Sujit Kumar Samanta, 2023. "Computational analysis of $$GI^{[X]}/D$$ G I [ X ] / D - $$MSP^{(a,b)}/1$$ M S P ( a , b ) / 1 queueing system via RG-factorization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 98(1), pages 1-39, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:51:y:2022:i:11:p:3739-3760. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.