IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v50y2021i24p6211-6230.html
   My bibliography  Save this article

A multi-step kernel–based regression estimator that adapts to error distributions of unknown form

Author

Listed:
  • Jan G. De Gooijer
  • Hugo Reichardt

Abstract

For linear regression models, we propose and study a multi-step kernel density-based estimator that is adaptive to unknown error distributions. We establish asymptotic normality and almost sure convergence. An efficient EM algorithm is provided to implement the proposed estimator. We also compare its finite sample performance with five other adaptive estimators in an extensive Monte Carlo study of eight error distributions. Our method generally attains high mean-square-error efficiency. An empirical example illustrates the gain in efficiency of the new adaptive method when making statistical inference about the slope parameters in three linear regressions.

Suggested Citation

  • Jan G. De Gooijer & Hugo Reichardt, 2021. "A multi-step kernel–based regression estimator that adapts to error distributions of unknown form," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 50(24), pages 6211-6230, November.
  • Handle: RePEc:taf:lstaxx:v:50:y:2021:i:24:p:6211-6230
    DOI: 10.1080/03610926.2020.1741625
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2020.1741625
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2020.1741625?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:50:y:2021:i:24:p:6211-6230. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.