IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v50y2020i21p5068-5083.html
   My bibliography  Save this article

General linear hypothesis testing in functional response model

Author

Listed:
  • Łukasz Smaga

Abstract

In this paper, the general linear hypothesis testing and variable selection problems in functional response model are considered. The globalizing pointwise F test and the Fmax-test as well as the variable selection methods based on multiple hypothesis testing are adapted to this model. The asymptotic null distributions and consistency under local alternatives of test statistics are established under some standard regularity conditions. Based on these results and nonparametric bootstrap approach, different methods are proposed to approximate the null distribution of test statistics. The performance of the new testing and variable selection procedures is compared with that of the known methods in numerical experiments based on real data set. The results suggest that the new methods often outperform the known ones in terms of size control, power and ability to detect significant variables.

Suggested Citation

  • Łukasz Smaga, 2020. "General linear hypothesis testing in functional response model," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 50(21), pages 5068-5083, September.
  • Handle: RePEc:taf:lstaxx:v:50:y:2020:i:21:p:5068-5083
    DOI: 10.1080/03610926.2019.1691233
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2019.1691233
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2019.1691233?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:50:y:2020:i:21:p:5068-5083. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.