IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v49y2020i2p325-342.html
   My bibliography  Save this article

Nonparametric density estimation based on beta prime kernel

Author

Listed:
  • Elif Erçelik
  • Mustafa Nadar

Abstract

In this work, we propose beta prime kernel estimator for estimation of a probability density functions defined with nonnegative support. For the proposed estimator, beta prime probability density function used as a kernel. It is free of boundary bias and nonnegative with a natural varying shape. We obtained the optimal rate of convergence for the mean squared error (MSE) and the mean integrated squared error (MISE). Also, we use adaptive Bayesian bandwidth selection method with Lindley approximation for heavy tailed distributions and compare its performance with the global least squares cross-validation bandwidth selection method. Simulation studies are performed to evaluate the average integrated squared error (ISE) of the proposed kernel estimator against some asymmetric competitors using Monte Carlo simulations. Moreover, real data sets are presented to illustrate the findings.

Suggested Citation

  • Elif Erçelik & Mustafa Nadar, 2020. "Nonparametric density estimation based on beta prime kernel," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 49(2), pages 325-342, January.
  • Handle: RePEc:taf:lstaxx:v:49:y:2020:i:2:p:325-342
    DOI: 10.1080/03610926.2018.1538458
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2018.1538458
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2018.1538458?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ouimet, Frédéric & Tolosana-Delgado, Raimon, 2022. "Asymptotic properties of Dirichlet kernel density estimators," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
    2. Kakizawa, Yoshihide, 2021. "A class of Birnbaum–Saunders type kernel density estimators for nonnegative data," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
    3. Kakizawa, Yoshihide, 2022. "Multivariate elliptical-based Birnbaum–Saunders kernel density estimation for nonnegative data," Journal of Multivariate Analysis, Elsevier, vol. 187(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:49:y:2020:i:2:p:325-342. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.