IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v49y2020i20p4996-5027.html
   My bibliography  Save this article

Distribution-free precedence schemes with a generalized runs-rule for monitoring unknown location

Author

Listed:
  • J.C. Malela-Majika
  • E.M Rapoo
  • A. Mukherjee
  • M.A. Graham

Abstract

Nonparametric statistical process monitoring schemes are robust alternatives to traditional parametric process monitoring schemes, especially when the assumption of normality is invalid or when we do not have enough information about the underlying process distribution. In this paper, we propose to improve the well-known precedence scheme using the 2-of-(h + 1) supplementary runs-rules (where h is a nonzero positive integer). The in-control and out-of-control performances of the proposed control schemes are thoroughly investigated using both Markov chain and simulation based approaches. We find that the proposed schemes outperform their competitors in many cases. A real-life example is given to illustrate the design and implementation of the proposed schemes.

Suggested Citation

  • J.C. Malela-Majika & E.M Rapoo & A. Mukherjee & M.A. Graham, 2020. "Distribution-free precedence schemes with a generalized runs-rule for monitoring unknown location," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 49(20), pages 4996-5027, October.
  • Handle: RePEc:taf:lstaxx:v:49:y:2020:i:20:p:4996-5027
    DOI: 10.1080/03610926.2019.1612914
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2019.1612914
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2019.1612914?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:49:y:2020:i:20:p:4996-5027. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.