IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v49y2020i19p4819-4833.html
   My bibliography  Save this article

Gamma mixture of generalized error distribution

Author

Listed:
  • Zhengyuan Wei
  • Suping Li
  • Qiao Li
  • Yucan Yu
  • Xiaoyang Zheng

Abstract

A new symmetric heavy-tailed distribution, namely gamma mixture of generalized error distribution is defined by scaling generalized error distribution with gamma distribution, its probability density function, k-moment, skewness and kurtosis are derived. After tedious calculation, we also give the Fisher information matrix, moment estimators and maximum likelihood estimators for the parameters of gamma mixture of generalized error distribution. In order to evaluate the effectiveness of the point estimators and the stability of Fisher information matrix, extensive simulation experiments are carried out in three groups of parameters. Additionally, the new distribution is applied to Apple Inc. stock (AAPL) data and compared with normal distribution, F-S skewed standardized t distribution and generalized error distribution. It is found that the new distribution has better fitting effect on the data under the Akaike information criterion (AIC). To a certain extent, our results enrich the probability distribution theory and develop the scale mixture distribution, which will provide help and reference for financial data analysis.

Suggested Citation

  • Zhengyuan Wei & Suping Li & Qiao Li & Yucan Yu & Xiaoyang Zheng, 2020. "Gamma mixture of generalized error distribution," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 49(19), pages 4819-4833, October.
  • Handle: RePEc:taf:lstaxx:v:49:y:2020:i:19:p:4819-4833
    DOI: 10.1080/03610926.2019.1609037
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2019.1609037
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2019.1609037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ramsebner, J. & Haas, R. & Auer, H. & Ajanovic, A. & Gawlik, W. & Maier, C. & Nemec-Begluk, S. & Nacht, T. & Puchegger, M., 2021. "From single to multi-energy and hybrid grids: Historic growth and future vision," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:49:y:2020:i:19:p:4819-4833. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.