IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v49y2020i16p3985-4001.html
   My bibliography  Save this article

Risk aggregation with dependence and overdispersion based on the compound Poisson INAR(1) process

Author

Listed:
  • Mi Chen
  • Xiang Hu

Abstract

This paper considers an extension of the classical discrete time risk model for which the claim numbers are assumed to be temporal dependence and overdispersion. The risk model proposed is based on the first-order integer-valued autoregressive (INAR(1)) process with discrete compound Poisson distributed innovations. The explicit expression for the moment generating function of the discounted aggregate claim amount is derived. Some numerical examples are provided to illustrate the impacts of dependence and overdispersion on related quantities such as the stop-loss premium, the value at risk and the tail value at risk.

Suggested Citation

  • Mi Chen & Xiang Hu, 2020. "Risk aggregation with dependence and overdispersion based on the compound Poisson INAR(1) process," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 49(16), pages 3985-4001, August.
  • Handle: RePEc:taf:lstaxx:v:49:y:2020:i:16:p:3985-4001
    DOI: 10.1080/03610926.2019.1594297
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2019.1594297
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2019.1594297?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:49:y:2020:i:16:p:3985-4001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.