IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v49y2020i13p3206-3227.html
   My bibliography  Save this article

Regression model for surrogate data in high dimensional statistics

Author

Listed:
  • Firas Ibrahim
  • Ali Hajj Hassan
  • Jacques Demongeot
  • Mustapha Rachdi

Abstract

This paper deals with the problem of estimating the regression of a surrogated scalar response variable given a functional random one. We construct an estimator of the regression operator by using, in addition to the available (true) response data, a surrogate data. We then establish some asymptotic properties of the constructed estimator in terms of the almost-complete and the quadratic mean convergences. Notice that the obtained results generalize a part of the results obtained in the finite dimensional framework. Finally, an illustration on the applicability of our results on both simulated data and a real dataset was realized. We have thus shown the superiority of our estimator on classical estimators when we are lacking complete data.

Suggested Citation

  • Firas Ibrahim & Ali Hajj Hassan & Jacques Demongeot & Mustapha Rachdi, 2020. "Regression model for surrogate data in high dimensional statistics," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 49(13), pages 3206-3227, July.
  • Handle: RePEc:taf:lstaxx:v:49:y:2020:i:13:p:3206-3227
    DOI: 10.1080/03610926.2019.1586940
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2019.1586940
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2019.1586940?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Boumahdi, Mounir & Ouassou, Idir & Rachdi, Mustapha, 2023. "Estimation in nonparametric functional-on-functional models with surrogate responses," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
    2. Mustapha Rachdi & Ali Laksaci & Zoulikha Kaid & Abbassia Benchiha & Fahimah A. Al‐Awadhi, 2021. "k‐Nearest neighbors local linear regression for functional and missing data at random," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 75(1), pages 42-65, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:49:y:2020:i:13:p:3206-3227. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.