IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v48y2019i7p1563-1578.html
   My bibliography  Save this article

q-Esscher transformed Laplace distribution

Author

Listed:
  • Rimsha H
  • Dais George

Abstract

Pathway idea is a switching mechanism by which one can go from one functional form to another, and to yet another. In this paper, we introduce a q-Esscher transformed Laplace distribution, which is a stretched model for Esscher transformed Laplace distribution, obtained by introducing a new pathway parameter q, which facilitates a slow transition to the Esscher transformed Laplace distribution as q → 1. This pathway model can be obtained by optimizing Mathai’s generalized entropy with more general setup, which is a generalization of various entropy measures due to Shannon and others. The various properties of the q-Esscher transformed Laplace distribution are studied and its applications are discussed.

Suggested Citation

  • Rimsha H & Dais George, 2019. "q-Esscher transformed Laplace distribution," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 48(7), pages 1563-1578, April.
  • Handle: RePEc:taf:lstaxx:v:48:y:2019:i:7:p:1563-1578
    DOI: 10.1080/03610926.2018.1435812
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2018.1435812
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2018.1435812?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:48:y:2019:i:7:p:1563-1578. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.