IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v48y2019i4p926-941.html
   My bibliography  Save this article

Computational analysis of the queue with working breakdowns and delaying repair under a Bernoulli-schedule-controlled policy

Author

Listed:
  • Tao Jiang
  • Baogui Xin

Abstract

This paper considers a single server queueing system with working breakdowns and delaying repair under a Bernoulli-schedule-controlled policy. At a breakdown instant, the system either goes to repair period immediately with probability p, or continues to provide auxiliary service for the current customers with probability q = 1 − p. While the system resides in the auxiliary service period, it may go to repair period if there is no customer at the epoch of service completion or the occurrence of breakdown. By using the matrix analytic method and the spectral expansion method, we respectively obtain the steady state distribution to make the straightforward computation of performance measures and the Laplace-Stieltjes transform of the stationary sojourn time of an arbitrary customer. In addition, some numerical examples are presented to show the impact of parameters on the performance measures.

Suggested Citation

  • Tao Jiang & Baogui Xin, 2019. "Computational analysis of the queue with working breakdowns and delaying repair under a Bernoulli-schedule-controlled policy," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 48(4), pages 926-941, February.
  • Handle: RePEc:taf:lstaxx:v:48:y:2019:i:4:p:926-941
    DOI: 10.1080/03610926.2017.1422756
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2017.1422756
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2017.1422756?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miaomiao Yu & Yinghui Tang, 2022. "Analysis of a renewal batch arrival queue with a fault-tolerant server using shift operator method," Operational Research, Springer, vol. 22(3), pages 2831-2858, July.
    2. Yang, Dong-Yuh & Wu, Chia-Huang, 2021. "Evaluation of the availability and reliability of a standby repairable system incorporating imperfect switchovers and working breakdowns," Reliability Engineering and System Safety, Elsevier, vol. 207(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:48:y:2019:i:4:p:926-941. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.