IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v48y2019i23p5701-5718.html
   My bibliography  Save this article

Multiple robustness estimation in causal inference

Author

Listed:
  • Lei Wang

Abstract

Estimation of average treatment effect is crucial in causal inference for evaluation of treatments or interventions in biostatistics, epidemiology, econometrics, sociology. However, existing estimators require either a propensity score model, an outcome vector model, or both is correctly specified, which is difficult to verify in practice. In this paper, we allow multiple models for both the propensity score models and the outcome models, and then construct a weighting estimator based on observed data by using two-sample empirical likelihood. The resulting estimator is consistent if any one of those multiple models is correctly specified, and thus provides multiple protection on consistency. Moreover, the proposed estimator can attain the semiparametric efficiency bound when one propensity score model and one outcome vector model are correctly specified, without requiring knowledge of which models are correct. Simulations are performed to evaluate the finite sample performance of the proposed estimators. As an application, we analyze the data collected from the AIDS Clinical Trials Group Protocol 175.

Suggested Citation

  • Lei Wang, 2019. "Multiple robustness estimation in causal inference," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 48(23), pages 5701-5718, December.
  • Handle: RePEc:taf:lstaxx:v:48:y:2019:i:23:p:5701-5718
    DOI: 10.1080/03610926.2018.1520881
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2018.1520881
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2018.1520881?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shu Yang & Yunshu Zhang, 2023. "Multiply robust matching estimators of average and quantile treatment effects," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 50(1), pages 235-265, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:48:y:2019:i:23:p:5701-5718. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.