IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v48y2019i20p5106-5120.html
   My bibliography  Save this article

Adaptive elastic net-penalized quantile regression for variable selection

Author

Listed:
  • Ailing Yan
  • Fengli Song

Abstract

There has been much attention on the high-dimensional linear regression models, which means the number of observations is much less than that of covariates. Considering the fact that the high dimensionality often induces the collinearity problem, in this article, we study the penalized quantile regression with the elastic net (EnetQR) that combines the strengths of the quadratic regularization and the lasso shrinkage. We investigate the weak oracle property of the EnetQR under mild conditions in the high dimensional setting. Moreover, we propose a two-step procedure, called adaptive elastic net quantile regression (AEnetQR), in which the weight vector in the second step is constructed from the EnetQR estimate in the first step. This two-step procedure is justified theoretically to possess the weak oracle property. The finite sample properties are performed through the Monte Carlo simulation and a real-data analysis.

Suggested Citation

  • Ailing Yan & Fengli Song, 2019. "Adaptive elastic net-penalized quantile regression for variable selection," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 48(20), pages 5106-5120, October.
  • Handle: RePEc:taf:lstaxx:v:48:y:2019:i:20:p:5106-5120
    DOI: 10.1080/03610926.2018.1508711
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2018.1508711
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2018.1508711?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:48:y:2019:i:20:p:5106-5120. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.