IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v48y2019i18p4511-4527.html
   My bibliography  Save this article

Upper bounds for ruin probabilities under model uncertainty

Author

Listed:
  • Zhongyang Sun

Abstract

In this paper, we investigate some ruin problems for risk models that contain uncertainties on both claim frequency and claim size distribution. The problems naturally lead to the evaluation of ruin probabilities under the so-called G-expectation framework. We assume that the risk process is described as a class of G-compound Poisson process, a special case of the G-Lévy process. By using the exponential martingale approach, we obtain the upper bounds for the two-sided ruin probability as well as the ruin probability involving investment. Furthermore, we derive the optimal investment strategy under the criterion of minimizing this upper bound. Finally, we conclude that the upper bound in the case with investment is less than or equal to the case without investment.

Suggested Citation

  • Zhongyang Sun, 2019. "Upper bounds for ruin probabilities under model uncertainty," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 48(18), pages 4511-4527, September.
  • Handle: RePEc:taf:lstaxx:v:48:y:2019:i:18:p:4511-4527
    DOI: 10.1080/03610926.2018.1491991
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2018.1491991
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2018.1491991?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tautvydas Kuras & Jonas Sprindys & Jonas Šiaulys, 2020. "Martingale Approach to Derive Lundberg-Type Inequalities," Mathematics, MDPI, vol. 8(10), pages 1-18, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:48:y:2019:i:18:p:4511-4527. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.