Author
Abstract
Inverse sampling is an appropriate design for the second phase of capture-recapture experiments which provides an exactly unbiased estimator of the population size. However, the sampling distribution of the resulting estimator tends to be highly right skewed for small recapture samples, so, the traditional Wald-type confidence intervals appear to be inappropriate. The objective of this paper is to study the performance of interval estimators for the population size under inverse recapture sampling without replacement. To this aim, we consider the Wald-type, the logarithmic transformation-based, the Wilson score, the likelihood ratio and the exact methods. Also, we propose some bootstrap confidence intervals for the population size, including the with-replacement bootstrap (BWR), the without replacement bootstrap (BWO), and the Rao–Wu’s rescaling method. A Monte Carlo simulation is employed to evaluate the performance of suggested methods in terms of the coverage probability, error rates and standardized average length. Our results show that the likelihood ratio and exact confidence intervals are preferred to other competitors, having the coverage probabilities close to the desired nominal level for any sample size, with more balanced error rate for exact method and shorter length for likelihood ratio method. It is notable that the BWO and Rao–Wu’s rescaling methods also may provide good intervals for some situations, however, those coverage probabilities are not invariant with respect to the population arguments, so one must be careful to use them.
Suggested Citation
Mohammad Mohammadi, 2019.
"Confidence intervals for the closed population size under inverse sampling without replacement,"
Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 48(14), pages 3518-3529, July.
Handle:
RePEc:taf:lstaxx:v:48:y:2019:i:14:p:3518-3529
DOI: 10.1080/03610926.2018.1476718
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:48:y:2019:i:14:p:3518-3529. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.