IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v48y2019i11p2862-2878.html
   My bibliography  Save this article

Approximate Bayesian analysis of doubly censored samples from mixture of two Weibull distributions

Author

Listed:
  • Navid Feroze
  • Muhammad Aslam

Abstract

The purpose of the paper is to estimate the parameters of the two-component mixture of Weibull distribution under doubly censored samples using Bayesian approach. The choice of Weibull distribution is made due to its (i) capability to model failure time data from engineering, medical and biological sciences (ii) added advantages over the well-known lifetime distributions such as exponential, Raleigh, lognormal and gamma distribution in terms of flexibility, increasing and decreasing hazard rate and closed-form distribution function and hazard rate. The proposed two-component mixture of Weibull distribution is even more flexible than its conventional form. However, the estimation of the parameters from the proposed mixture is more complex. Further, we have assumed couple of loss functions under non informative prior for the Bayesian analysis of the parameters from the mixture model. As the resultant Bayes estimators and associated posterior risks cannot be derived in the closed form, we have used the importance sampling and Lindley’s approximation to obtain the approximate estimates for the parameters of the mixture model. The comparison between the performances of approximation techniques has been made on the basis of simulation study and real-life data analysis. The importance sampling is found to be better than Lindley’s approximation as it gives better estimation for shape and mixing parameters of the mixture model and computations under this technique are much easier/shorter than those under Lindley’s approximation.

Suggested Citation

  • Navid Feroze & Muhammad Aslam, 2019. "Approximate Bayesian analysis of doubly censored samples from mixture of two Weibull distributions," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 48(11), pages 2862-2878, June.
  • Handle: RePEc:taf:lstaxx:v:48:y:2019:i:11:p:2862-2878
    DOI: 10.1080/03610926.2018.1473430
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2018.1473430
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2018.1473430?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Showkat Ahmad Lone & Tabassum Naz Sindhu & Marwa K. H. Hassan & Tahani A. Abushal & Sadia Anwar & Anum Shafiq, 2023. "Theoretical Structure and Applications of a Newly Enhanced Gumbel Type II Model," Mathematics, MDPI, vol. 11(8), pages 1-18, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:48:y:2019:i:11:p:2862-2878. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.