IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v47y2018i6p1459-1474.html
   My bibliography  Save this article

Statistical hypothesis testing for the shape of impulse response function

Author

Listed:
  • Iryna V. Rozora

Abstract

The problem of estimation of unknown response function of a time-invariant continuous linear system is considered. Integral sample input–output cross-correlogram is taken as an estimator of the response function. The inputs are supposed to be zero-mean stationary Gaussian process. A criterion on the shape of impulse response function is given. For this purpose, we apply a theory of square–Gaussian random processes and estimate the probability that supremum of square–Gaussian process exceeds the level specified by some function.

Suggested Citation

  • Iryna V. Rozora, 2018. "Statistical hypothesis testing for the shape of impulse response function," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 47(6), pages 1459-1474, March.
  • Handle: RePEc:taf:lstaxx:v:47:y:2018:i:6:p:1459-1474
    DOI: 10.1080/03610926.2017.1321125
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2017.1321125
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2017.1321125?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rozora Iryna & Lyzhechko Mariia, 2018. "On the modeling of linear system input stochastic processes with given accuracy and reliability," Monte Carlo Methods and Applications, De Gruyter, vol. 24(2), pages 129-137, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:47:y:2018:i:6:p:1459-1474. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.