IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v47y2018i3p681-697.html
   My bibliography  Save this article

Semiparametric mixture of additive regression models

Author

Listed:
  • Yi Zhang
  • Qingle Zheng

Abstract

In this article, we propose a semiparametric mixture of additive regression models, in which the regression functions are additive and non parametric while the mixing proportions and variances are constant. Compared with the mixture of linear regression models, the proposed methodology is more flexible in modeling the non linear relationship between the response and covariate. A two-step procedure based on the spline-backfitted kernel method is derived for computation. Moreover, we establish the asymptotic normality of the resultant estimators and examine their good performance through a numerical example.

Suggested Citation

  • Yi Zhang & Qingle Zheng, 2018. "Semiparametric mixture of additive regression models," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 47(3), pages 681-697, February.
  • Handle: RePEc:taf:lstaxx:v:47:y:2018:i:3:p:681-697
    DOI: 10.1080/03610926.2017.1310243
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2017.1310243
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2017.1310243?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sphiwe B. Skhosana & Salomon M. Millard & Frans H. J. Kanfer, 2023. "A Novel EM-Type Algorithm to Estimate Semi-Parametric Mixtures of Partially Linear Models," Mathematics, MDPI, vol. 11(5), pages 1-20, February.
    2. Marco Berrettini & Giuliano Galimberti & Saverio Ranciati, 2023. "Semiparametric finite mixture of regression models with Bayesian P-splines," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(3), pages 745-775, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:47:y:2018:i:3:p:681-697. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.