Author
Listed:
- Anastassia Baxevani
- Krzysztof Podgórski
Abstract
We study the distribution of phases and amplitudes for the spectral representation of weighted moving averages of a general noise measure. The simple independent structure, known for the Gaussian case, and involving Rayleigh amplitude and uniform phase distributions, is lost for the non Gaussian noise case. We show that the amplitude/phase distributions exhibit a rich and more complex structure depending not just on the covariance of the process but specifically on the form of the kernel and the noise distribution. We present a theoretical tool for studying these distributions that follows from a proof of the spectral theorem that yields an explicit expression for the spectral measure. The main interest is in noise measures based on second-order Lévy motions since such measures are easily available through independent sampling. We approximate the spectral stochastic measure by independent noise increments which allows us to obtain amplitude/phase distributions that is of fundamental interest for analyzing processes in the frequency domain. For the purpose of approximating the moving average process through sums of trigonometric functions, we assess the mean square error of discretization of the spectral representation. For a specified accuracy, the approximation is explicitly given. We illustrate the method for the moving averages driven by the Laplace motion.
Suggested Citation
Anastassia Baxevani & Krzysztof Podgórski, 2018.
"Random spectral measure for non Gaussian moving averages,"
Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 47(2), pages 448-462, January.
Handle:
RePEc:taf:lstaxx:v:47:y:2018:i:2:p:448-462
DOI: 10.1080/03610926.2017.1303737
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:47:y:2018:i:2:p:448-462. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.