IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v47y2018i2p427-447.html
   My bibliography  Save this article

A Poisson-multinomial mixture approach to grouped and right-censored counts

Author

Listed:
  • Qiang Fu
  • Xin Guo
  • Kenneth C. Land

Abstract

Although count data are often collected in social, psychological, and epidemiological surveys in grouped and right-censored categories, there is a lack of statistical methods simultaneously taking both grouping and right-censoring into account. In this research, we propose a new generalized Poisson-multinomial mixture approach to model grouped and right-censored (GRC) count data. Based on a mixed Poisson-multinomial process for conceptualizing grouped and right-censored count data, we prove that the new maximum-likelihood estimator (MLE-GRC) is consistent and asymptotically normally distributed for both Poisson and zero-inflated Poisson models. The use of the MLE-GRC, implemented in an R function, is illustrated by both statistical simulation and empirical examples. This research provides a tool for epidemiologists to estimate incidence from grouped and right-censored count data and lays a foundation for regression analyses of such data structure.

Suggested Citation

  • Qiang Fu & Xin Guo & Kenneth C. Land, 2018. "A Poisson-multinomial mixture approach to grouped and right-censored counts," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 47(2), pages 427-447, January.
  • Handle: RePEc:taf:lstaxx:v:47:y:2018:i:2:p:427-447
    DOI: 10.1080/03610926.2017.1303736
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2017.1303736
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2017.1303736?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiang Fu & Tian‐Yi Zhou & Xin Guo, 2021. "Modified Poisson regression analysis of grouped and right‐censored counts," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(4), pages 1347-1367, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:47:y:2018:i:2:p:427-447. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.