IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v47y2018i2p344-364.html
   My bibliography  Save this article

On Markov-switching periodic ARMA models

Author

Listed:
  • Billel Aliat
  • Fayçal Hamdi

Abstract

In this work, we propose a generalization of the classical Markov-switching ARMA models to the periodic time-varying case. Specifically, we propose a Markov-switching periodic ARMA (MS-PARMA) model. In addition of capturing regime switching often encountered during the study of many economic time series, this new model also captures the periodicity feature in the autocorrelation structure. We first provide some probabilistic properties of this class of models, namely the strict periodic stationarity and the existence of higher-order moments. We thus propose a procedure for computing the autocovariance function where we show that the autocovariances of the MS-PARMA model satisfy a system of equations similar to the PARMA Yule–Walker equations. We propose also an easily implemented algorithm which can be used to obtain parameter estimates for the MS-PARMA model. Finally, a simulation study of the performance of the proposed estimation method is provided.

Suggested Citation

  • Billel Aliat & Fayçal Hamdi, 2018. "On Markov-switching periodic ARMA models," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 47(2), pages 344-364, January.
  • Handle: RePEc:taf:lstaxx:v:47:y:2018:i:2:p:344-364
    DOI: 10.1080/03610926.2017.1303734
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2017.1303734
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2017.1303734?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jin Zou & Dong Han, 2021. "Yule–Walker Equations Using a Gini Covariance Matrix for the High-Dimensional Heavy-Tailed PVAR Model," Mathematics, MDPI, vol. 9(6), pages 1-15, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:47:y:2018:i:2:p:344-364. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.