IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v47y2018i24p6019-6033.html
   My bibliography  Save this article

Variable selection in heteroscedastic single-index quantile regression

Author

Listed:
  • Eliana Christou
  • Michael G. Akritas

Abstract

We propose a new algorithm for simultaneous variable selection and parameter estimation for the single-index quantile regression (SIQR) model . The proposed algorithm, which is non iterative , consists of two steps. Step 1 performs an initial variable selection method. Step 2 uses the results of Step 1 to obtain better estimation of the conditional quantiles and , using them, to perform simultaneous variable selection and estimation of the parametric component of the SIQR model. It is shown that the initial variable selection method consistently estimates the relevant variables , and the estimated parametric component derived in Step 2 satisfies the oracle property.

Suggested Citation

  • Eliana Christou & Michael G. Akritas, 2018. "Variable selection in heteroscedastic single-index quantile regression," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 47(24), pages 6019-6033, December.
  • Handle: RePEc:taf:lstaxx:v:47:y:2018:i:24:p:6019-6033
    DOI: 10.1080/03610926.2017.1405271
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2017.1405271
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2017.1405271?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eliana Christou & Michael G. Akritas, 2019. "Single index quantile regression for censored data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(4), pages 655-678, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:47:y:2018:i:24:p:6019-6033. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.