IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v47y2018i13p3138-3160.html
   My bibliography  Save this article

A characteristic function-based approach to approximate maximum likelihood estimation

Author

Listed:
  • M. Bee
  • L. Trapin

Abstract

The choice of the summary statistics in approximate maximum likelihood is often a crucial issue. We develop a criterion for choosing the most effective summary statistic and then focus on the empirical characteristic function. In the iid setting, the approximating posterior distribution converges to the approximate distribution of the parameters conditional upon the empirical characteristic function. Simulation experiments suggest that the method is often preferable to numerical maximum likelihood. In a time-series framework, no optimality result can be proved, but the simulations indicate that the method is effective in small samples.

Suggested Citation

  • M. Bee & L. Trapin, 2018. "A characteristic function-based approach to approximate maximum likelihood estimation," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 47(13), pages 3138-3160, July.
  • Handle: RePEc:taf:lstaxx:v:47:y:2018:i:13:p:3138-3160
    DOI: 10.1080/03610926.2017.1348523
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2017.1348523
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2017.1348523?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marcin Pitera & Aleksei Chechkin & Agnieszka Wyłomańska, 2022. "Goodness-of-fit test for $$\alpha$$ α -stable distribution based on the quantile conditional variance statistics," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(2), pages 387-424, June.
    2. Marco Bee, 2022. "The truncated g-and-h distribution: estimation and application to loss modeling," Computational Statistics, Springer, vol. 37(4), pages 1771-1794, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:47:y:2018:i:13:p:3138-3160. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.