IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v47y2018i12p2805-2812.html
   My bibliography  Save this article

A new test for decreasing mean residual lifetimes

Author

Listed:
  • Edgardo Lorenzo
  • Ganesh Malla
  • Hari Mukerjee

Abstract

The mean residual life of a non negative random variable X with a finite mean is defined by M(t) = E[X − t|X > t] for t ⩾ 0. One model of aging is the decreasing mean residual life (DMRL): M is decreasing (non increasing) in time. It vastly generalizes the more stringent model of increasing failure rate (IFR). The exponential distribution lies at the boundary of both of these classes. There is a large literature on testing exponentiality against DMRL alternatives which are all of the integral type. Because most parametric families of DMRL distributions are IFR, their relative merits have been compared only at some IFR alternatives. We introduce a new Kolmogorov–Smirnov type sup-test and derive its asymptotic properties. We compare the powers of this test with some integral tests by simulations using a class of DMRL, but not IFR alternatives, as well as some popular IFR alternatives. The results show that the sup-test is much more powerful than the integral tests in all cases.

Suggested Citation

  • Edgardo Lorenzo & Ganesh Malla & Hari Mukerjee, 2018. "A new test for decreasing mean residual lifetimes," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 47(12), pages 2805-2812, June.
  • Handle: RePEc:taf:lstaxx:v:47:y:2018:i:12:p:2805-2812
    DOI: 10.1080/03610926.2014.985841
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2014.985841
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2014.985841?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:47:y:2018:i:12:p:2805-2812. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.