IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v46y2017i3p1433-1444.html
   My bibliography  Save this article

Complete convergence for weighted sums of extended negatively dependent random variables

Author

Listed:
  • Aiting Shen
  • Mingxiang Xue
  • Wenjuan Wang

Abstract

In this article, the complete convergence for weighted sums of extended negatively dependent (END, in short) random variables without identical distribution is investigated. In addition, the complete moment convergence for weighted sums of END random variables is also obtained. As an application, the Baum–Katz type result for END random variables is established. The results obtained in the article extend the corresponding ones for independent random variables and some dependent random variables.

Suggested Citation

  • Aiting Shen & Mingxiang Xue & Wenjuan Wang, 2017. "Complete convergence for weighted sums of extended negatively dependent random variables," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(3), pages 1433-1444, February.
  • Handle: RePEc:taf:lstaxx:v:46:y:2017:i:3:p:1433-1444
    DOI: 10.1080/03610926.2015.1019147
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2015.1019147
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2015.1019147?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kuczmaszewska, Anna & Yan, Ji Gao, 2018. "On complete convergence in Marcinkiewicz-Zygmund type SLLN for random variables," IRTG 1792 Discussion Papers 2018-041, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    2. Yan Wang & Xuejun Wang, 2021. "Complete f-moment convergence for Sung’s type weighted sums and its application to the EV regression models," Statistical Papers, Springer, vol. 62(2), pages 769-793, April.
    3. Yan, Ji Gao, 2018. "On Complete Convergence in Marcinkiewicz-Zygmund Type SLLN for END Random Variables and its Applications," IRTG 1792 Discussion Papers 2018-042, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:46:y:2017:i:3:p:1433-1444. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.