IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v46y2017i3p1317-1336.html
   My bibliography  Save this article

Posterior analysis of the compound Rayleigh distribution under balanced loss functions for censored data

Author

Listed:
  • D. R. Barot
  • M. N. Patel

Abstract

This paper develops Bayesian analysis in the context of progressively Type II censored data from the compound Rayleigh distribution. The maximum likelihood and Bayes estimates along with associated posterior risks are derived for reliability performances under balanced loss functions by assuming continuous priors for parameters of the distribution. A practical example is used to illustrate the estimation methods. A simulation study has been carried out to compare the performance of estimates. The study indicates that Bayesian estimation should be preferred over maximum likelihood estimation. In Bayesian estimation, the balance general entropy loss function can be effectively employed for optimal decision-making.

Suggested Citation

  • D. R. Barot & M. N. Patel, 2017. "Posterior analysis of the compound Rayleigh distribution under balanced loss functions for censored data," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(3), pages 1317-1336, February.
  • Handle: RePEc:taf:lstaxx:v:46:y:2017:i:3:p:1317-1336
    DOI: 10.1080/03610926.2015.1019140
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2015.1019140
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2015.1019140?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kousik Maiti & Suchandan Kayal, 2019. "Estimation for the generalized Fréchet distribution under progressive censoring scheme," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(5), pages 1276-1301, October.
    2. Mohamed A. W. Mahmoud & Mohamed G. M. Ghazal & Hossam M. M. Radwan, 2023. "Bayesian Estimation and Optimal Censoring of Inverted Generalized Linear Exponential Distribution Using Progressive First Failure Censoring," Annals of Data Science, Springer, vol. 10(2), pages 527-554, April.
    3. Kousik Maiti & Suchandan Kayal, 2023. "Estimating Reliability Characteristics of the Log-Logistic Distribution Under Progressive Censoring with Two Applications," Annals of Data Science, Springer, vol. 10(1), pages 89-128, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:46:y:2017:i:3:p:1317-1336. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.