IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v46y2017i2p815-827.html
   My bibliography  Save this article

Detection and estimation of structural change in heavy-tailed sequence

Author

Listed:
  • Wang Dan
  • Guo Pengjiang
  • Xia Zhiming

Abstract

In this paper, bootstrap detection and ratio estimation are proposed to analysis mean change in heavy-tailed distribution. First, the test statistic is constructed into a ratio form on the CUSUM process. Then, the asymptotic distribution of test statistic is obtained and the consistency of the test is proved. To solve the problem that the null distribution of the test statistic contains unknown tail index, we present a bootstrap approximation method to determine the critical values of the null distribution. We also discuss how to estimate change point based on ratio method. The consistency and rate of convergence for the change-point estimator are established. Finally, the excellent performance of our method is demonstrated through simulations using artificial and real data sets. Especially the simulation results of bootstrap test are better than those of another existing method.

Suggested Citation

  • Wang Dan & Guo Pengjiang & Xia Zhiming, 2017. "Detection and estimation of structural change in heavy-tailed sequence," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(2), pages 815-827, January.
  • Handle: RePEc:taf:lstaxx:v:46:y:2017:i:2:p:815-827
    DOI: 10.1080/03610926.2015.1006780
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2015.1006780
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2015.1006780?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michal Pešta & Martin Wendler, 2020. "Nuisance-parameter-free changepoint detection in non-stationary series," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 379-408, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:46:y:2017:i:2:p:815-827. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.