IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v46y2017i2p628-643.html
   My bibliography  Save this article

Mean response estimation with missing response in the presence of high-dimensional covariates

Author

Listed:
  • Yongjin Li
  • Qihua Wang
  • Liping Zhu
  • Xiaobo Ding

Abstract

This paper studies the problem of mean response estimation where missingness occurs to the response but multiple-dimensional covariates are observable. Two main challenges occur in this situation: curse of dimensionality and model specification. The non parametric imputation method relieves model specification but suffers curse of dimensionality, while some model-based methods such as inverse probability weighting (IPW) and augmented inverse probability weighting (AIPW) methods are the opposite. We propose a unified non parametric method to overcome the two challenges with the aiding of sufficient dimension reduction. It imposes no parametric structure on propensity score or conditional mean response, and thus retains the non parametric flavor. Moreover, the estimator achieves the optimal efficiency that a double robust estimator can attain. Simulations were conducted and it demonstrates the excellent performances of our method in various situations.

Suggested Citation

  • Yongjin Li & Qihua Wang & Liping Zhu & Xiaobo Ding, 2017. "Mean response estimation with missing response in the presence of high-dimensional covariates," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(2), pages 628-643, January.
  • Handle: RePEc:taf:lstaxx:v:46:y:2017:i:2:p:628-643
    DOI: 10.1080/03610926.2014.1002935
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2014.1002935
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2014.1002935?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Qihua & Su, Miaomiao & Wang, Ruoyu, 2021. "A beyond multiple robust approach for missing response problem," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
    2. Lei Wang, 2019. "Dimension reduction for kernel-assisted M-estimators with missing response at random," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(4), pages 889-910, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:46:y:2017:i:2:p:628-643. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.