Author
Listed:
- Housila P. Singh
- Tanveer A. Tarray
Abstract
This paper aimed at providing an efficient new unbiased estimator for estimating the proportion of a potentially sensitive attribute in survey sampling. The suggested randomization device makes use of the means, variances of scrambling variables, and the two scalars lie between “zero” and “one.” Thus, the same amount of information has been used at the estimation stage. The variance formula of the suggested estimator has been obtained. We have compared the proposed unbiased estimator with that of Kuk (1990) and Franklin (1989), and Singh and Chen (2009) estimators. Relevant conditions are obtained in which the proposed estimator is more efficient than Kuk (1990) and Franklin (1989) and Singh and Chen (2009) estimators. The optimum estimator (OE) in the proposed class of estimators has been identified which finally depends on moments ratios of the scrambling variables. The variance of the optimum estimator has been obtained and compared with that of the Kuk (1990) and Franklin (1989) estimator and Singh and Chen (2009) estimator. It is interesting to mention that the “optimum estimator” of the class of estimators due to Singh and Chen (2009) depends on the parameter π under investigation which limits the use of Singh and Chen (2009) OE in practice while the proposed OE in this paper is free from such a constraint. The proposed OE depends only on the moments ratios of scrambling variables. This is an advantage over the Singh and Chen (2009) estimator. Numerical illustrations are given in the support of the present study when the scrambling variables follow normal distribution. Theoretical and empirical results are very sound and quite illuminating in the favor of the present study.
Suggested Citation
Housila P. Singh & Tanveer A. Tarray, 2017.
"An efficient use of moment's ratios of scrambling variables in a randomized response technique,"
Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(2), pages 521-531, January.
Handle:
RePEc:taf:lstaxx:v:46:y:2017:i:2:p:521-531
DOI: 10.1080/03610926.2014.997363
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:46:y:2017:i:2:p:521-531. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.